Trough Power Cycle Integration

David Kearney
CSP Review Meeting
November 7, 2001

Team Members:

Hank Price Robert Pitz-Paal Paul Nava

Greg Kolb

Bruce Kelly

Mary Jane Hale

Juergen Dersch

Ulf Herrmann

Bob Cable

Michael Geyer Rainer Kistner

Georg Brakmann

Vahab Hasani

David Kearney

Volker Quaschning

Winfried Ortmanns

Representing:

SunLab (NREL & Sandia), Kearney & Associates, Nexant, Reflective Energies, Barber Nichols, ORMAT, Exergy, Bibb & Assoc. DLR, FSI, CIEMAT, Fichtner, NIST

Purpose of Trough Power Cycle Integration Project

DOE Program Objectives:

- Identify best options for integrating a parabolic trough solar field into power plants, seeking
 - Increased effectiveness of solar thermal input
 - Better solar power plant performance
 - Reduced system cost

Power Integration Options Evaluated

- Combined Cycle (ISCCS, SEECOT)
- Organic Rankine Cycles
- Kalina Cycle
- Direct Steam Generation in Solar Field

Accomplishments

- Excellent analysis on ISCCS cycles, with direct applicability on GEF project designs
- Good understanding of ORC options, allowing optimization studies to progress
- Tracking of the direct steam generation work in Europe for future U.S. application if warranted

Integrated Solar Combined Cycle System

ISCCS Design Optimization

Integrated Solar Combined Cycle System

Objective:

- Develop optimization methodology for integrating the solar plant into combined cycle power plant.
- Why attractive?
 - Solar steam taken to higher reheat temperatures with gas turbine exhaust
 - Incremental power block cost only \$100/kW
 - Power block does not cycle daily as in solar only plant
 - Performance effectiveness of solar system and, to some extent, power block are slightly improved

• Issues:

- If integration done poorly the plant can be less efficient than a fuel only combined-cycle plant.
- Minimize impact on combined-cycle plant
- Thermal storage

Approach:

- Contract with Nexant/Flabeg
- Extensive GateCycle runs carried out in parametric analyses
- International collaboration on TIPP Project (Flabeg, DLR)

Nexant/Flabeg USA Trough Phase I Work

ISCCS Optimization Study

Low Impact ISCCS (2 GE Frame 7FAs)

- 1-2% Annual Solar Contribution
- 40-42% Solar to Electric Efficiency
- Steam Turbine Increase 30 MWe (GT 314 MWe, ST 214MWe)
- Solar Field Size 200,000 m²

High Impact ISCCS (1 Frame 7FA)

- 13% Annual Solar Contribution
- 29% Solar to Electric Efficiency
- Steam Turbine Increase 75 MWe (GT 157 MWe, ST 165 MWe)
- Solar Field Size 723,760 m²

SEECOT

Solar Energy Enhanced Combustion Turbine

Solar absorption cooling of inlet air on gas turbine or combined cycle power plant

- Objective:
 - Evaluation of benefits and cost effectiveness of SEECOT cycle
- Approach:
 - Contract with Industrial Solar Technology
 - NREL support on GT/CC analysis
- Results:
 - Cooling GT inlet air allows more gas to be burned increasing plant capacity at slightly improved efficiency
 - Minimal benefit related to solar, but difficult to quantify

Organic Ranking Cycle

and Ammonia Water

Objective:

 Evaluate options for integration of trough solar plant with other power cycle technologies.

• Issues/Opportunities:

- High value markets for solar power in smaller size plants
- Improvements in geothermal & biomass power cycle technologies create opportunities for integration with trough solar technology.
- Thermal storage available for solar plants operating at 300C
- Lower temperatures mean lower efficiency
- Need to design plants to minimize O&M requirements

Approach:

- Contracts with Reflective Energies (Bibb & Associates), Barber Nichols, Exergy, NIST
- SunLab Study

Reflective Energies USA Trough Phase I Work

Solar Trough Organic Rankine Electric System

STORES

- 10 MWe Cascade ORC

Sandia National Laboratories, Albuquerque, NM National Renewable Energy Laboratory, Golden CO

- Air Cooled
- Uses Caloria HTF for Thermal Storage
- ORC Optimized for Trough Temperatures

Reflective Energies

Results
Capital Cost \$4500/kWe
LEC 22-31 ¢/kWh

SunLab Trough ORC Analysis

2nd Plant Economics

Power Cycle:

- 1 MWe organic Rankine cycle
- recuperated
- air cooled
- 22.5% efficiency
- \$1700/kW_e (Barber Nichols)

Solar Field:

- ~20,000 m² parabolic trough
- 193-304C operating temperature
- non-evacuated Cermet receiver
- \$200/m²

Thermal Storage:

- 2-Tank Caloria HT-43
- 9 hours of thermal storage
- Nexant TS cost model

• Annual Performance:

- capacity factor @ 1 MWe: 53%
- solar to electric efficiency: 8.4%

Economic Assumptions:

- 20 year lifetime
- Insurance: 0.5% of capital cost
- O&M cost: 2.5¢/kWh
- Levelized Energy Cost: 20¢/kWh

Future Costs < 15 ¢/kWh
(after 10s of systems)

Direct Steam Generation

 Objective: Evaluate parabolic trough solar field that generates high temperature and pressure steam directly in the collectors.

• Advantage:

- Elimination of HTF system
- Increase solar field operating temperature

• Issues:

- Maintaining steam quality to turbine Reduce pumping parasitics
- with transient resource conditions
- High pressure steam in solar field
- Flow control in multi-loop solar field
- No thermal storage option
- Approach: European test in Spain

Summary of Key Results

- Excellent work on optimization of ISCCS power cycle configurations, leading to better commercial systems options and improved performance projections
- Good foundation work on ORC systems, setting stage for final optimizations
- Monitoring of direct steam generation option